"I want Llama3 to perform 10x with my private knowledge" - Local Agentic RAG w/ llama3
影片主要內容:
- RAG 在知識管理中的應用: 大型語言模型 (LLM) 可以成為強大的 KM 工具,但它們難以處理和理解非結構化數據格式,例如 PDF 和演示文稿。RAG 通過結合檢索和生成技術來解決這一挑戰。該模型會根據用戶的查詢從數據庫中檢索相關文檔,然後使用這些文檔來生成其響應。
- RAG 實現的挑戰:
- 數據混亂: 現實世界中的數據通常很混亂,需要在 RAG 使用之前進行清理和轉換。
- 選擇合適的檢索方法: 不同的檢索方法適用於不同的數據類型。例如,向量搜索可能不適合需要從各種數據源(結構化和非結構化)獲取知識的複雜問題。
- 答案質量: 確保檢索到的文檔與用戶的查詢相關並完整地回答用戶的問題可能很困難。
- 高級 RAG 技術: 介紹了一些高級 RAG 技術來提高 RAG 應用程序的質量和可靠性:
- 更好的數據預處理: 使用 Llama Part 等專門為 LLM 設計的 PDF 解析器等工具可以顯著提高數據質量。
- 重新排名檢索到的文檔: 而不是將所有檢索到的文檔都提供給 LLM,可以使用排名模型來識別最相關的文檔,從而提高答案的準確性和效率。
- 混合搜索: 將向量搜索與關鍵字搜索相結合對於需要精確匹配的任務(例如電子商務產品搜索)很有用。
- Agent RAG: 此技術利用代理來動態推理檢索過程。代理可以修改用戶的查詢,為複雜問題執行逐步檢索,並決定是從檢索到的文檔中生成答案還是進行額外的網絡搜索。
- 構建本地 Agent RAG 應用程序: 影片講者演示了如何使用大型語言模型 Llama3 和向量數據庫工具 Goose3 構建本地 Agent RAG 應用程序。該應用程序從網站中檢索博客文章並使用它們來回答用戶的查詢。工作流程包括創建檢索模型、定義檢索條件、將條件邏輯納入以確定答案生成方法以及檢查答案的準確性。
影片最後總結 Agent RAG 和更簡單的 RAG 實現之間的權衡。Agent RAG 提供了卓越的質量和控制,但代價是響應速度較慢。