詞嵌入將文字轉換成數值向量,讓機器學習模型能夠處理文字資料。相似的詞彙在向量空間中彼此靠近,距離和方向代表詞彙間的語義關係。 片中說明了詞嵌入在自然語言處理 (NLP) 中的關鍵作用,例如文字分類、命名實體辨識和問答系統等。接著,解釋了兩種主要的詞嵌入方法:基於詞頻的方法 (例如TF-IDF) 和基於預測的方法 (例如Word2Vec, GloVe),並比較了它們的差異。最後,介紹了更先進的基於上下文的方法 (Transformer 模型),它能根據上下文調整詞彙的向量表示,進一步提升 NLP 的效能。這視頻旨在說明詞嵌入技術如何有效地將人類語言轉換成機器可理解的數值形式,從而推動自然語言處理的發展。
What are Word Embeddings?